Scheduled special issues
The following special issues are scheduled for publication in GMD:
A
- 3-D Street-in-Grid (SinG) model development and application
- Urban canyon and network model development and its incorporation into 3-D CTMs
- Urban and street-level air quality modelling in support of human exposure assessment
- Impact of urban traffic emissions on air quality and human health at a street level
- Hyperlocal (street and city block scales) air quality measurement and modelling
- Urban infrastructure-induced circulation and its impact on city planning
C
D
regional MOM6) creates such a framework, but the extension of MOM6 to high-resolution regional applications presents many challenges.
The papers in this collection present the overall design and implementation of regional MOM6, describe new parameterizations intended for regional applications, present a first generation of regional MOM6 configurations from across the global ocean, and offer select initial applications in ocean science. Advances in horizontal grid generation and boundary condition formulation are highlighted, including those enabling a more seamless transmission of physical and biogeochemical information from global to regional scales and those required to handle flexible Lagrangian vertical coordinates. The robustness of physical and biogeochemical configurations and parameterizations – many of which were developed for global applications – is explored in higher-resolution implementations spanning environments from the Arctic to equatorial waters. Analysis of tradeoffs between model skill and computational cost highlights algorithmic improvements critical for producing decision-relevant ensembles that span a range of ocean futures. The collected works provide a foundation for the expanded application of regional MOM6 to understand and predict ocean conditions across scales.
This is a
traditional stylespecial issue open to all papers within the topic. We anticipate that contributions will be primarily to GMD initially but that there will be a growing number of applications suitable for OS once the core development papers have been published. The indefinite ending date will allow for a greater number of initial applications to be published in OS and enable eventual documentation of
generational updatesplanned for some configurations.
F
G
J
M
For this SI we welcome manuscripts on activities such as MIIPs – Model Intercomparison and Improvement Projects that target long-standing issues in the representation of small-scale processes in numerical weather prediction and climate models. The initiatives may have been taken during the 10-year Polar Prediction Project (PPP) that finished at the end of 2022 or during the Polar Coupled Analysis and Prediction for Services (PCAPS) both part of the WMO World Weather Research Program. These programs suggest an emphasis on processes that are especially important for the polar regions, but contributions that are relevant and important for model performance in other regions of the world are also welcome. Specific targets are the representation of stably stratified boundary layers, mixed-phase clouds and atmospheric coupling with snow and or ice-covered surfaces, sea-ice, ocean mixing etc.
The intention of this SI is to publish results from MIIPs that establish new and improved workflows to facilitate a more efficient path to improved process representation. This includes research-grade observations that are packaged in an easy-to-use format which combine high-frequency observations of the surface and the atmosphere above to be able to directly compare with the parameterizations used in models using time-step data. The Merged Data File (MDF) format that is defined for both observations and model output come with a series of tools that is transferable between models and observational data collections for both file production and analysis. The SI especially welcome contributions that build on, or further develop the MDF concept including new variables, types of data, sites or new analysis tools such as process-oriented diagnostics or insights in models using the targeted files.
Review process: all papers of this special issue underwent the regular interactive peer-review process of Geoscientific Model Development handled by members of the GMD editorial board.
N
This Special Issue aims to collect technical and scientific manuscripts dealing with evaluation of model skill and performance as well as development of NEMO components. Submitted manuscripts can cover a wide variety of topics, including process studies, new parameterizations, implementation of new model features and new NEMO configurations. The main scope is to collect relevant and state of the art manuscripts to provide the NEMO users with a single portal to search, discover and understand about the NEMO modelling framework potential and evolution and submit their contributions.
P
T
FAMOUS is climate model based on the widely used "HadCM3" atmosphere–ocean general circulation code, a version of the UK Met Office Unified Model. Run at a lower resolution than HadCM3, its computational requirements make it suitable for large ensembles and millennial-scale climate simulations. This ongoing special issue collects technical documentation and evaluations of the model climatology as FAMOUS is developed and coupled to models of other Earth system components.
Firedrake provides a model development system which is both high productivity and high performance. Users write high-level code in Python describing the mathematical formulation of a model. The low-level, high-performance, parallel implementation of the algorithm is then automatically generated by a sequence of domain-specific compilers. The user writes maths and gets simulation. Firedrake provides users with a vast range of finite element discretisations, including the compatible finite-element methods which accurately represent the critical force balances in large-scale geoscientific problems. Other important features for the geoscientific user include curved elements and layered meshes, which are key to accurate atmosphere and ocean modelling.
The strategy follows a bottom-up approach, meaning that the various processes and diagnostic tools are implemented as so-called submodels, which are technically independent of each other and strictly separated from the underlying technical model infrastructure, such as memory management, input/output, flow-control, etc.
The MESSy software provides generalized interfaces for the standardized control and interconnection (coupling) of these submodels.
The present time-unlimited Special Issue hosts scientific and technical documentation and evaluation manuscripts concerned with the Modular Earth Submodel System and the models build upon it. Moreover, it comprises manuscripts about scientific applications involving these models.
The NorESM publications in this special issue address a range of NorESM versions. The first set of model versions delivered results to CMIP5. NorESM1-M is run concentration-driven for greenhouse gases (GHGs) and is based on CCSM4 (released 1 April 2010), while NorESM1-ME can be run emission-driven for GHGs and is based on CESM1 (released 1 July 2010). A low-resolution version, NorESM1-L, was developed mainly for paleo-climate simulations. New versions of NorESM are underway: NorESM1.X, where X indicates updates of the NorESM1 versions, and NorESM2, which is intended to contribute to CMIP6. Further versions will follow thereafter. NorESM includes the following: its own developed code for chemistry–aerosol–cloud–radiation interactions (CAM-Oslo) and enhancements of the dynamics/physics of the atmospheric module; alternative parameterization of surface turbulent fluxes; an isopycnic coordinate ocean model originating from the Miami Isopycnic Coordinate Ocean Model (MICOM) but developed further; and the HAMburg Ocean Carbon Cycle (HAMOCC) model developed at the Max Plank Institute for Meteorology, Hamburg and adapted to the isopycnic coordinate ocean model framework.
Papers developed for full validation (CMIP-DECK) or more specific evaluation of the NorESM versions and further developments of these are welcome in this special issue. Authors intending to contribute papers to this special issue should contact the coordinators (Mats Bentsen and Michael Schulz), e.g., to ensure the consistency of version names and numbers.
SimSphere is a one-dimensional soil–vegetation–atmosphere transfer model devoted to the study of land surface interactions of the Earth’s system. Since its early development, the model has become highly variable in its application use.
Apart from its use as an educational tool at several universities worldwide, SimSphere is used in a number of research studies related to the examination of hypothetical scenarios examining land surface processes and feedbacks. It is also used synergistically with Earth observation (EO) data to retrieve spatiotemporal estimates of energy fluxes and surface soil moisture, involving exploration studies on the development of related operational products.
This special issue hosts contributions concerned with descriptions of further upgrades of SimSphere or its exploitation in any way. It comprises articles on model developments or applications involving the model; this includes – but is not limited to – studies exploring hypothetical scenario examination, model validation, sensitivity analysis and synergies of it with EO data.
The aim of this Special Issue is to bring together under one roof papers using the TMM as the underlying simulation method. This can range from manuscripts documenting various technical aspects of the TMM framework to those describing new biogeochemical models/parameterizations and their application.
iLOVECLIM is an intermediate complexity fully coupled climate Earth system model that aims at computation and understanding of the climate system on a millennial timescale. It is a code fork from the LOVECLIM climate model version 1.2. From its forerunner, iLOVECLIM retains only the physical climate components (atmosphere–ocean–terrestrial vegetation modules). It is developed further to progressively include the components necessary for multi-millennia palaeoclimate and future climate experiments. As such, iLOVECLIM is a tool designed to enhance the integration of model simulations and (palaeo-)data, with an emphasis on the simulation of isotopic tracers throughout all components of the climate system, as indicated by the i- prefix. The present, time-unlimited special issue hosts the technical documentation of the current version of iLOVECLIM as well as model evaluation manuscripts.
Climate science, in particular climate prediction and projection, are heavily dependent on the use of Earth system models (ESMs), which are nonlinear, complex, and chaotic representations of the Earth’s spheres. As such, ESMs are susceptible to various sources of uncertainty. These include uncertainty in the initial state, parameter values, model formulation, structure, and external forcing. Ensembles have become a key tool to quantify these uncertainties and improve predictions. However, challenging questions remain regarding how to design and interpret such ensembles within the constraints of limited computational power and the lack of a rigorous framework for their design. Therefore, this special issue will be a valuable resource to climate scientists working on both theoretical and practical aspects of prediction ahead of Phase 7 of the Coupled Model Intercomparison Project (CMIP7) and future assessments.
This issue arises from the minisymposium Theoretical and Computational Aspects of Ensemble Design and Interpretation in Climate Science and Modelling
hosted during the SIAM Conference on Mathematical & Computational Issues in Geosciences in Bergen, Norway (19–22 June 2023). It will feature works by participants as well as external contributions.
W
The prediction of the winter weather over complex terrain is quite challenging due to the highly variable nature of winds, visibility, and snowfall. As a World Meteorological Organization (WMO) World Weather Research Program (WWRP) Research Demonstration Project (RDP) and Forecast Demonstration Project (FDP), ICE-POP 2018 (International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic winter games) was held in the PyeongChang region from November 2017 to April 2018 with contributions from 29 agencies from 12 countries. The region was quite unique for observing winter weathers that are influenced by cold air and warm ocean interaction, sudden uplifting by steep terrains near the coast, and modulation by complex terrains. The main scientific goal was to understand the precipitation processes in this unique region during the cold season and to evaluate/improve forecasting from numerical models based on intensive observations. Dense observational networks of upper air observation (eight soundings, two wind profilers, shipborne sounding, and dropsonde), remote sensing (three X-Pol radars, one Ku/Ka-Pol radar and three S-Pol, one S-band, two C-band, and three Doppler lidars), microphysical observation (2DVD, MASC, PIP, Parsivel, MRR, POSS, Pluvio), and surface stations (64 stations) were implemented, in particular, to observe the evolution of precipitation along and across atmospheric flows. The field experiment and real-time forecast demonstration ended and the second phase of the experiment has started for better understanding of the microphysical processes, their better representation in the numerical modeling, and further improvement of winter weather prediction through various international collaborations.
The main purposes of the special issue are
1) to document the scientific findings on the winter weather during the forecast demonstration project
2) to share scientific knowledge on processes of winter weathers that have been investigated with unprecedented dense observational networks,
3) to share current status and improved knowledge of forecasting of winter weathers, and
4) to document new retrieval and quality control methods of the operational and advanced instruments.
The special issue will include all manuscripts related to observational data, products, NWP modeling, researches on observational instrumentation, process/mechanism study, reanalysis, integration of observation and numerical modeling, and prediction of the winter weathers.
2023
For this SI we welcome manuscripts on activities such as MIIPs – Model Intercomparison and Improvement Projects that target long-standing issues in the representation of small-scale processes in numerical weather prediction and climate models. The initiatives may have been taken during the 10-year Polar Prediction Project (PPP) that finished at the end of 2022 or during the Polar Coupled Analysis and Prediction for Services (PCAPS) both part of the WMO World Weather Research Program. These programs suggest an emphasis on processes that are especially important for the polar regions, but contributions that are relevant and important for model performance in other regions of the world are also welcome. Specific targets are the representation of stably stratified boundary layers, mixed-phase clouds and atmospheric coupling with snow and or ice-covered surfaces, sea-ice, ocean mixing etc.
The intention of this SI is to publish results from MIIPs that establish new and improved workflows to facilitate a more efficient path to improved process representation. This includes research-grade observations that are packaged in an easy-to-use format which combine high-frequency observations of the surface and the atmosphere above to be able to directly compare with the parameterizations used in models using time-step data. The Merged Data File (MDF) format that is defined for both observations and model output come with a series of tools that is transferable between models and observational data collections for both file production and analysis. The SI especially welcome contributions that build on, or further develop the MDF concept including new variables, types of data, sites or new analysis tools such as process-oriented diagnostics or insights in models using the targeted files.
Review process: all papers of this special issue underwent the regular interactive peer-review process of Geoscientific Model Development handled by members of the GMD editorial board.
Climate science, in particular climate prediction and projection, are heavily dependent on the use of Earth system models (ESMs), which are nonlinear, complex, and chaotic representations of the Earth’s spheres. As such, ESMs are susceptible to various sources of uncertainty. These include uncertainty in the initial state, parameter values, model formulation, structure, and external forcing. Ensembles have become a key tool to quantify these uncertainties and improve predictions. However, challenging questions remain regarding how to design and interpret such ensembles within the constraints of limited computational power and the lack of a rigorous framework for their design. Therefore, this special issue will be a valuable resource to climate scientists working on both theoretical and practical aspects of prediction ahead of Phase 7 of the Coupled Model Intercomparison Project (CMIP7) and future assessments.
This issue arises from the minisymposium Theoretical and Computational Aspects of Ensemble Design and Interpretation in Climate Science and Modelling
hosted during the SIAM Conference on Mathematical & Computational Issues in Geosciences in Bergen, Norway (19–22 June 2023). It will feature works by participants as well as external contributions.
regional MOM6) creates such a framework, but the extension of MOM6 to high-resolution regional applications presents many challenges.
The papers in this collection present the overall design and implementation of regional MOM6, describe new parameterizations intended for regional applications, present a first generation of regional MOM6 configurations from across the global ocean, and offer select initial applications in ocean science. Advances in horizontal grid generation and boundary condition formulation are highlighted, including those enabling a more seamless transmission of physical and biogeochemical information from global to regional scales and those required to handle flexible Lagrangian vertical coordinates. The robustness of physical and biogeochemical configurations and parameterizations – many of which were developed for global applications – is explored in higher-resolution implementations spanning environments from the Arctic to equatorial waters. Analysis of tradeoffs between model skill and computational cost highlights algorithmic improvements critical for producing decision-relevant ensembles that span a range of ocean futures. The collected works provide a foundation for the expanded application of regional MOM6 to understand and predict ocean conditions across scales.
This is a
traditional stylespecial issue open to all papers within the topic. We anticipate that contributions will be primarily to GMD initially but that there will be a growing number of applications suitable for OS once the core development papers have been published. The indefinite ending date will allow for a greater number of initial applications to be published in OS and enable eventual documentation of
generational updatesplanned for some configurations.
- 3-D Street-in-Grid (SinG) model development and application
- Urban canyon and network model development and its incorporation into 3-D CTMs
- Urban and street-level air quality modelling in support of human exposure assessment
- Impact of urban traffic emissions on air quality and human health at a street level
- Hyperlocal (street and city block scales) air quality measurement and modelling
- Urban infrastructure-induced circulation and its impact on city planning
2022
2021
2020
The prediction of the winter weather over complex terrain is quite challenging due to the highly variable nature of winds, visibility, and snowfall. As a World Meteorological Organization (WMO) World Weather Research Program (WWRP) Research Demonstration Project (RDP) and Forecast Demonstration Project (FDP), ICE-POP 2018 (International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic winter games) was held in the PyeongChang region from November 2017 to April 2018 with contributions from 29 agencies from 12 countries. The region was quite unique for observing winter weathers that are influenced by cold air and warm ocean interaction, sudden uplifting by steep terrains near the coast, and modulation by complex terrains. The main scientific goal was to understand the precipitation processes in this unique region during the cold season and to evaluate/improve forecasting from numerical models based on intensive observations. Dense observational networks of upper air observation (eight soundings, two wind profilers, shipborne sounding, and dropsonde), remote sensing (three X-Pol radars, one Ku/Ka-Pol radar and three S-Pol, one S-band, two C-band, and three Doppler lidars), microphysical observation (2DVD, MASC, PIP, Parsivel, MRR, POSS, Pluvio), and surface stations (64 stations) were implemented, in particular, to observe the evolution of precipitation along and across atmospheric flows. The field experiment and real-time forecast demonstration ended and the second phase of the experiment has started for better understanding of the microphysical processes, their better representation in the numerical modeling, and further improvement of winter weather prediction through various international collaborations.
The main purposes of the special issue are
1) to document the scientific findings on the winter weather during the forecast demonstration project
2) to share scientific knowledge on processes of winter weathers that have been investigated with unprecedented dense observational networks,
3) to share current status and improved knowledge of forecasting of winter weathers, and
4) to document new retrieval and quality control methods of the operational and advanced instruments.
The special issue will include all manuscripts related to observational data, products, NWP modeling, researches on observational instrumentation, process/mechanism study, reanalysis, integration of observation and numerical modeling, and prediction of the winter weathers.
2019
Firedrake provides a model development system which is both high productivity and high performance. Users write high-level code in Python describing the mathematical formulation of a model. The low-level, high-performance, parallel implementation of the algorithm is then automatically generated by a sequence of domain-specific compilers. The user writes maths and gets simulation. Firedrake provides users with a vast range of finite element discretisations, including the compatible finite-element methods which accurately represent the critical force balances in large-scale geoscientific problems. Other important features for the geoscientific user include curved elements and layered meshes, which are key to accurate atmosphere and ocean modelling.
2018
2017
The aim of this Special Issue is to bring together under one roof papers using the TMM as the underlying simulation method. This can range from manuscripts documenting various technical aspects of the TMM framework to those describing new biogeochemical models/parameterizations and their application.
2016
2015
SimSphere is a one-dimensional soil–vegetation–atmosphere transfer model devoted to the study of land surface interactions of the Earth’s system. Since its early development, the model has become highly variable in its application use.
Apart from its use as an educational tool at several universities worldwide, SimSphere is used in a number of research studies related to the examination of hypothetical scenarios examining land surface processes and feedbacks. It is also used synergistically with Earth observation (EO) data to retrieve spatiotemporal estimates of energy fluxes and surface soil moisture, involving exploration studies on the development of related operational products.
This special issue hosts contributions concerned with descriptions of further upgrades of SimSphere or its exploitation in any way. It comprises articles on model developments or applications involving the model; this includes – but is not limited to – studies exploring hypothetical scenario examination, model validation, sensitivity analysis and synergies of it with EO data.
2013
This Special Issue aims to collect technical and scientific manuscripts dealing with evaluation of model skill and performance as well as development of NEMO components. Submitted manuscripts can cover a wide variety of topics, including process studies, new parameterizations, implementation of new model features and new NEMO configurations. The main scope is to collect relevant and state of the art manuscripts to provide the NEMO users with a single portal to search, discover and understand about the NEMO modelling framework potential and evolution and submit their contributions.
iLOVECLIM is an intermediate complexity fully coupled climate Earth system model that aims at computation and understanding of the climate system on a millennial timescale. It is a code fork from the LOVECLIM climate model version 1.2. From its forerunner, iLOVECLIM retains only the physical climate components (atmosphere–ocean–terrestrial vegetation modules). It is developed further to progressively include the components necessary for multi-millennia palaeoclimate and future climate experiments. As such, iLOVECLIM is a tool designed to enhance the integration of model simulations and (palaeo-)data, with an emphasis on the simulation of isotopic tracers throughout all components of the climate system, as indicated by the i- prefix. The present, time-unlimited special issue hosts the technical documentation of the current version of iLOVECLIM as well as model evaluation manuscripts.
2012
The NorESM publications in this special issue address a range of NorESM versions. The first set of model versions delivered results to CMIP5. NorESM1-M is run concentration-driven for greenhouse gases (GHGs) and is based on CCSM4 (released 1 April 2010), while NorESM1-ME can be run emission-driven for GHGs and is based on CESM1 (released 1 July 2010). A low-resolution version, NorESM1-L, was developed mainly for paleo-climate simulations. New versions of NorESM are underway: NorESM1.X, where X indicates updates of the NorESM1 versions, and NorESM2, which is intended to contribute to CMIP6. Further versions will follow thereafter. NorESM includes the following: its own developed code for chemistry–aerosol–cloud–radiation interactions (CAM-Oslo) and enhancements of the dynamics/physics of the atmospheric module; alternative parameterization of surface turbulent fluxes; an isopycnic coordinate ocean model originating from the Miami Isopycnic Coordinate Ocean Model (MICOM) but developed further; and the HAMburg Ocean Carbon Cycle (HAMOCC) model developed at the Max Plank Institute for Meteorology, Hamburg and adapted to the isopycnic coordinate ocean model framework.
Papers developed for full validation (CMIP-DECK) or more specific evaluation of the NorESM versions and further developments of these are welcome in this special issue. Authors intending to contribute papers to this special issue should contact the coordinators (Mats Bentsen and Michael Schulz), e.g., to ensure the consistency of version names and numbers.
2011
2008
FAMOUS is climate model based on the widely used "HadCM3" atmosphere–ocean general circulation code, a version of the UK Met Office Unified Model. Run at a lower resolution than HadCM3, its computational requirements make it suitable for large ensembles and millennial-scale climate simulations. This ongoing special issue collects technical documentation and evaluations of the model climatology as FAMOUS is developed and coupled to models of other Earth system components.
2005
The strategy follows a bottom-up approach, meaning that the various processes and diagnostic tools are implemented as so-called submodels, which are technically independent of each other and strictly separated from the underlying technical model infrastructure, such as memory management, input/output, flow-control, etc.
The MESSy software provides generalized interfaces for the standardized control and interconnection (coupling) of these submodels.
The present time-unlimited Special Issue hosts scientific and technical documentation and evaluation manuscripts concerned with the Modular Earth Submodel System and the models build upon it. Moreover, it comprises manuscripts about scientific applications involving these models.