Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
GMD cover
Executive editors:
Julia
 
Hargreaves
,
Lutz
 
Gross
,
David
 
Ham
,
Astrid
 
Kerkweg
,
Didier
 
Roche
 &
Rolf
 
Sander

Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:

  • geoscientific model descriptions, from statistical models to box models to GCMs;
  • development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
  • new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
  • papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
  • model experiment descriptions, including experimental details and project protocols;
  • full evaluations of previously published models.

More details can be found in manuscript types and the journal editorial (compiled by the executive editors).

"I believe that the time is ripe for significantly better documentation of programs, and that we can best achieve this by considering programs to be works of literature."
(Donald E. Knuth, Literate Programming, 1984)

"Essentially, all models are wrong, but some are useful."
(George E. P. Box, Robustness in the strategy of scientific model building, 1979)

Highlight articles

Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school.

Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner

We provide the experimental designs and protocols for a community experiment to compare radiative transfer codes used for past climate on Earth, and for exoplanets.

Colin Goldblatt, Lucas Kavanagh, and Maura Dewey

A global aerosol reanalysis product named the Japanese Reanalysis for Aerosol (JRAero) was constructed by the Meteorological Research Institute (MRI) of the Japan Meteorological Agency. The reanalysis employs a global aerosol transport model developed by MRI and a two-dimensional variational data assimilation method. It assimilates maps of aerosol optical depth (AOD) from MODIS onboard the Terra and Aqua satellites every 6 h and has a TL159 horizontal resolution (approximately 1.1°×1.1°).

Keiya Yumimoto, Taichu Y. Tanaka, Naga Oshima, and Takashi Maki

The CarbonTracker Data Assimilation Shell (CTDAS) is the new modular implementation of the CarbonTracker Europe (CTE) data assimilation system. We present and document CTDAS and demonstrate its ability to estimate global carbon sources and sinks. We present the latest CTE results including the distribution of the carbon sinks over the hemispheres and between the land biosphere and the oceans. We show the versatility of CTDAS with an overview of the wide range of other applications.

Ingrid T. van der Laan-Luijkx, Ivar R. van der Velde, Emma van der Veen, Aki Tsuruta, Karolina Stanislawska, Arne Babenhauserheide, Hui Fang Zhang, Yu Liu, Wei He, Huilin Chen, Kenneth A. Masarie, Maarten C. Krol, and Wouter Peters

The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate.

Ingo Wohltmann, Ralph Lehmann, and Markus Rex

Recent articles

News

New article processing charges for GMD

05 Dec 2017

From 1 January 2018 Geoscientific Model Development (GMD) will slightly increase the article processing charges.

New institutional agreement between the PIK and Copernicus Publications

24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Publications Copernicus