Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union

Highlight articles

We developed a plant hydraulics model for tropical forests based on established plant physiological theory, and parameterized it by conducting a pantropical hydraulic trait survey. We show that a substantial amount of trait diversity can be represented in the model by a reduced set of trait dimensions. The fully parameterized model is able capture tree-level variation in water status and improves simulations of total ecosystem transpiration, showing how to incorporate hydraulic traits in models.

Bradley O. Christoffersen, Manuel Gloor, Sophie Fauset, Nikolaos M. Fyllas, David R. Galbraith, Timothy R. Baker, Bart Kruijt, Lucy Rowland, Rosie A. Fisher, Oliver J. Binks, Sanna Sevanto, Chonggang Xu, Steven Jansen, Brendan Choat, Maurizio Mencuccini, Nate G. McDowell, and Patrick Meir

This study compares the 20th century multi-annual climate variability modes in reanalysis data sets (ERA-20C and 20CR) and 12 climate model simulations using the randomised multi-channel singular spectrum analysis. The reanalysis data sets are remarkably similar on all timescales, except that the spectral power in ERA-20C is systematically slightly higher than in 20CR. None of the climate models closely reproduce all aspects of the reanalysis spectra, although many aspects are represented well.

Heikki Järvinen, Teija Seitola, Johan Silén, and Jouni Räisänen

This paper analyses methods to assimilate chemical measurements in air quality models. We developed a reduced-order atmospheric chemistry model, which was used to compare results from different assimilation algorithms. Using an ensemble variational method (4DEnVar), we exploited the dynamical information provided by hourly measurements of chemical concentrations to diagnose model biases and improve next-day forecasts for several species of interest for air quality.

Emanuele Emili, Selime Gürol, and Daniel Cariolle

This paper tells why to launch the Global Monsoons Model Inter-comparison Project (GMMIP) and how to achieve its scientific goals on monsoon variability. It addresses the scientific questions to be answered, describes three tiered experiments comprehensively and proposes a basic analysis framework to guide future research. It will help the monsoon research communities to understand the objectives of the GMMIP and the modelling groups involved in the GMMIP conduct the experiments successfully.

Tianjun Zhou, Andrew G. Turner, James L. Kinter, Bin Wang, Yun Qian, Xiaolong Chen, Bo Wu, Bin Wang, Bo Liu, Liwei Zou, and Bian He

The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, H08, PCR-GLOBWB, and WaterGAP, to provide the first multi-model analysis of global water use for the 21st century based on the water scenarios.

Y. Wada, M. Flörke, N. Hanasaki, S. Eisner, G. Fischer, S. Tramberend, Y. Satoh, M. T. H. van Vliet, P. Yillia, C. Ringler, P. Burek, and D. Wiberg

This study presents the inclusion of 10 Mediterranean agricultural plants in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With this development presented, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture.

M. Fader, W. von Bloh, S. Shi, A. Bondeau, and W. Cramer

The ECCO v4 non-linear inverse modeling framework and its reference solution are made publicly available. The inverse estimate of ocean physics and atmospheric forcing yields a dynamically consistent and global state estimate without unidentified sources of heat and salt that closely fits in situ and satellite data. Any user can reproduce it accurately. Parametric and external model uncertainties are of comparable magnitudes and generally exceed structural model uncertainties.

G. Forget, J. M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch

In this paper, we redesign the mpiPOM with GPUs. Specifically, we first convert the model from its original Fortran form to a new CUDA-C version, POM.gpu-v1.0. Then we optimize the code on each of the GPUs, the communications between the GPUs, and the I/O between the GPUs and the CPUs. We show that the performance of the new model on a workstation containing 4 GPUs is comparable to that on a powerful cluster with 408 standard CPU cores, and it reduces the energy consumption by a factor of 6.8.

S. H. Xu, X. M. Huang, Y. Zhang, H. H. Fu, L. Y. Oey, F. H. Xu, and G. W. Yang

Ecosystem models provide a powerful tool for simulating ocean biology. Care must be exercised when selecting appropriate equations and parameter values to represent chosen marine ecosystems. Here, we present an efficient plankton model testbed, using simplified physics and coded in the freely available language R. Multiple runs can be undertaken for different ocean sites, permitting thorough evaluation of ecosystem model performance. The testbed also serves as an excellent resource for teaching.

T.R. Anderson, W.C. Gentleman, and A. Yool

The natural abundance of 14C in CO2 dissolved in seawater is often used to evaluate circulation and age in the ocean and in ocean models. We study limitations of using natural 14C to determine the time elapsed since water had contact with the atmosphere. We find that, globally, bulk 14C age is dominated by two equally important components, (1) the time component of circulation and (2) the “preformed 14C-age”. Considering preformed 14C-age is critical for an assessment of circulation in models.

W. Koeve, H. Wagner, P. Kähler, and A. Oschlies

We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.

A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener

We provide improved routines to model the ocean carbonate system, i.e., to compute ocean pH and related variables from dissolved inorganic carbon and total alkalinity. These routines (1) rely on the fastest available algorithm to solve the alkalinity-pH equation, which converges even under extreme conditions; (2) avoid common model approximations that lead to errors of 3% or more in computed variables; and (3) account for large pressure effects on subsurface pCO2, unlike other packages.

J. C. Orr and J.-M. Epitalon

This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models.

H. Wan, P. J. Rasch, K. Zhang, Y. Qian, H. Yan, and C. Zhao

We present a new coupled ocean-circulation–ice model configuration of the Baltic Sea. The model features, contrary to most existing configurations, a high horizontal resolution of 1 nautical mile (1.85 km), which is eddy-resolving over much of the domain.

H. Dietze, U. Löptien, and K. Getzlaff

Publications Copernicus